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A
wide range of both natural and syn-
thetic materials derive their function
from nanoscale porous structure.1�11

Despite the importance of these materials, a
detailed understanding of the relationship be-
tween nanoscale structure and the material's
functional capabilities is lacking due to insuffi-
cient characterization techniques. Electron
and force microscopy methods have experi-
mental requirements that distort and even
destroy the porous structure.12 Ensemble
techniques report average pore properties,
losing information about the spatial hetero-
geneity.13 Microrheology provides local vis-
coelastic information but lacks visual spatial
resolution and requires a high computational
cost to track and analyze many particles.14

An optimized analytical method would pro-
vide in situ characterizationof the relationship
between heterogeneous nanoscale structure
and functional properties such as transport or
adsorption.
Correlation analysis provides important

spatial and diffusion details aboutmaterials.
Super-resolution optical fluctuation imaging
(SOFI)15 uses correlation analysis to achieve
spatial resolution below the diffraction
limit.16�19 SOFI correlates optical fluctuations
from individual switching emitters, andpixels
with isolated emitters will have a highly cor-
related signal compared to areaswith amixed
signal from multiple emitters. SOFI offers
advantages over other localization-based
super-resolution techniques because it has
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ABSTRACT Porous materials such as cellular cytosol, hydrogels,

and block copolymers have nanoscale features that determine

macroscale properties. Characterizing the structure of nanopores is

difficult with current techniques due to imaging, sample prepara-

tion, and computational challenges. We produce a super-resolution

optical image that simultaneously characterizes the nanometer

dimensions of and diffusion dynamics within porous structures by

correlating stochastic fluctuations from diffusing fluorescent probes

in the pores of the sample, dubbed here as “fluorescence correlation

spectroscopy super-resolution optical fluctuation imaging” or “fcsSOFI”. Simulations demonstrate that structural features and diffusion properties can be

accurately obtained at sub-diffraction-limited resolution. We apply our technique to image agarose hydrogels and aqueous lyotropic liquid crystal gels. The

heterogeneous pore resolution is improved by up to a factor of 2, and diffusion coefficients are accurately obtained through our method compared to

diffraction-limited fluorescence imaging and single-particle tracking. Moreover, fcsSOFI allows for rapid and high-throughput characterization of porous

materials. fcsSOFI could be applied to soft porous environments such hydrogels, polymers, and membranes in addition to hard materials such as zeolites

and mesoporous silica.
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a broader tolerance for emitter density, signal-to-back-
ground ratio (SBR), point spread function (PSF) shape,
and user-input requirements.20,21 Correlation analysis
can also resolve and quantify diffusion dynamics with
fluorescence correlation spectroscopy (FCS)22 and ima-
ging analogues.23�26 Emitters diffuse through a focal
volume, creating spontaneousfluctuations recorded in a
temporal photon series. The decay of the temporal
autocorrelation function of the photon trace is analyzed
to extract information on the type and rate of diffusion.
Here, we combine SOFI with FCS to yield a powerful

new method, named fcsSOFI, which can simulta-
neously provide super-resolution optical imaging to-
gether with diffusion dynamics of probe molecules in
porous structures. We correlate fluctuations from dif-
fusing probes within the negative, porous space of the
sample. A super-resolution image of the pore sizes is
obtained from the amplitude of the correlation curve.
Diffusion properties are mapped at the diffraction limit
by fitting the correlation curve. Image fusion produces
a final map of the nanoscale spatial and diffu-
sion information. The theoretical framework for sto-
chastic diffusion to produce super-resolved images is
provided, and the technique is demonstrated by simu-
lation. We apply our analysis to quantify the hetero-
geneous pore distribution and diffusion of fluorescent
probes within agarose hydrogels and lyotropic liquid
crystals. Our results are compared to diffraction-limited
imaging and localization-based single-particle tracking
(SPT) and demonstrate that fcsSOFI provides an objec-
tive, sensitive, high-throughput analysis, especially under

challenging experimental conditions with low signal or
high density of emitters.

RESULTS AND DISCUSSION

fcsSOFI Theory and Analysis. The theory of obtaining
sub-diffraction-limited resolution by correlation analysis
relies on imaging multiple radiant emitters diffusing
within a porous material, thus creating fluctuations in
the signal based on their stochastic and independent
diffusion. The signal, F, detected at a given position, r,
and frame time, t, from emitters nearby is

F(r, t) ¼
Z
dr1U(r � r1)ε1B1(t) (1)

where U(r � r1) is the PSF centered at r1, ε1 is the
constant brightness of the emitter, and B1(t) is the
probability of an emitter being located at r1 at t. In this
work, emitters are initially fluorescent beads whose
brightness is approximately constant during measure-
ments, but any material that produces an optical
signal that fluctuates with time due to diffusion could
be used, as later demonstrated using single molecules
(see Supporting Information). The fluctuation of the
signal over time, δF(r,t), is caused by B(t):

δF(r, t) ¼
Z

dr1U(r � r1)ε1[B1(t) � ÆB1(t)æt]

¼
Z

dr1U(r � r1)ε1δB1(t) (2)

where Æ 3 æt represents the average over time. The
autocorrelation at a given position r is calculated by

G2(r, τ) ¼ ÆδF(r, tþ τ) 3 δF(r, t)æt

¼
Z

dr1U(r� r1)
Z

dr2U(r� r2)ε1ε2ÆδB2(tþ τ)δB1(t)æ

¼
Z

dr1U(r� r1)
Z

d(r2 � r1)U((r� r1) � (r2 � r1))
ÆCæ

(4πDτ)1:5
exp � (r1� r2)

2

4Dτ

 !
ε1ε2

(3)

thus

G2(r, τ)∼
Z

dr1U(r� r1)

� U(r� r1)Xexp � (r� r1)
2

4Dτ

 !2
4

3
5ε1ε2 (4)

where ÆCæ is the average concentration of diffusing
emitters,X stands for convolution, and τ is the time lag.
We use a Gaussian function to approximate the PSF:

U(r) ¼ exp � x2 þ y2

2σ2
xy

� z2

2σ2
z

 !
(5)

The analysis below considers resolution enhance-
ment in 2D only (x and y components), as our experi-
mental data can be considered a projection of the

∼85 nm z-dimension focal depth onto 2D.27 After the
second-order autocorrelation, the equivalent 2D width
of the PSF will be

1
σ2
new

¼ 1
σ2
xy

þ 1
σ2
xy þ 2Dτ

(6)

so that σxy/
√
2 < σnew < σxy. This proves that the

resolution is indeed improved using second-order auto-
correlation fcsSOFI. Further improvement in spatial
resolution at the boundaries of adjacent pores is de-
scribed in the Supporting Information. Specifically, for
materials with 1D structure, diffusion is limited to the
longitudinal direction only, such that the transverse
resolution improvement will achieve the same resolu-
tion improvement as SOFI. At the limits of diffusion
when D = ¥, there is no resolution improvement, and
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when D = 0, the resolution improvement is maximized
to be the same as second-order autocorrelation SOFI
obtained for static emitters. However, both cases are
experimentally impractical as a large D results in low
signal and D = 0 causes zero intensity fluctuations at
each pixel for the constant, nonblinking emitters, mak-
ing fcsSOFI analysis impossible. Therefore, fcsSOFI reso-
lution capabilities lie between the diffraction limit and
SOFI. Like FCS measurements, the concentration of
emitters and the average diffusion coefficient need
to be carefully selected to optimize the performance
(Figure S1).

As a demonstration in this work, we perform
second-order autocorrelation of the intensity transient
at each pixel, which results in an image with a resolu-
tion improvement close to j

√
2 by employing the

value of G2(r,τ) at the first time lag, τ = dt = 1 frame,
where dt is the time lag between frames (Figure S2).15

A blind deconvolution28 is then performed to achieve
a final resolution enhancement of j2 (Figure S2). It is
important to note that higher-order autocorrelation
and cross-correlation would improve the resolution
even further,15,20 to a range of σxy/

√
n < σn < σxy, where

n is the order of the correlation, but would require
overcoming computational challenges (computation
time and memory usage scale as the correlation order
squared)15 and have brightness/sampling artifacts that
cause the pixel intensities to vary over a very large
dynamic range (spatially highlighting bright areas
and masking dim ones).2,15 For proof-of-concept, we
demonstrate here only second-order autocorrelation
and deconvolution analysis, similar to use of second-
order autocorrelation SOFI reported in the literature.2

Super-resolution distributions of the diffusion dy-
namics are obtained from curve fitting analysis and
image fusion. Using fitting models for Brownian diffu-
sion reported in previous imagingextensions of FCS,24,25

the resulting diffusion coefficient at each pixel is spa-
tially mapped (see Methods). As with most microscopy
techniques, when imaging 3D samples as a 2D projec-
tion, the apparent diffusion coefficient can be under-
estimated due to movement along the z-axis. However,
because SOFI is less sensitive to out-of-plane motions
compared to wide-field imaging,29 the impact of 3D-to-
2D projection is correspondingly reduced. Additionally,
the reduced focal depth of SOFI is advantageous
for quantifying 3D motion when combined with, for
example, multifocal imaging.30 A super-resolution map
of diffusion information is formed by fusing31 the spatial
and diffusion results on a hue saturation value (HSV)
colormap. The hue is the normalized log of the diffu-
sion coefficient. The saturation is the normalized super-
resolution spatial information. The HSV matrix is then
converted to a red-green-blue (RGB) matrix to produce
the final super-resolutionmapof diffusion characteristics.

Demonstration of fcsSOFI by Simulation. Simulations
were used to demonstrate super-resolution imaging

of two neighboring pores (Figure 1). Brownian diffusion
was simulated with different diffusion coefficients in
eachpore,Dleft = 1� 105nm2/s andDright =1� 104nm2/s
(movie S1). A relatively lowSBRwasused to simulate data
that occur when imaging single molecules in cellular
environments where high levels of autofluorescence are
present and low quantum yield emitters are required for

Figure 1. fcsSOFI analysis of simulated diffraction-limited
diffusion improves spatial resolution with accurate diffu-
sion properties. (a�e) Steps of fcsSOFI. (a) Example frames
of two emitters undergoing simulated 1D Brownian diffu-
sion in neighboring pores that are unresolvable due to the
diffraction limit. Pore locations are indicated by pink and
blue arrows/colored lines. (b,c) Example intensity transients
from one pixel in the (b) left and (c) right pores. (d,e)
Autocorrelation analysis is performed on each pixel's tran-
sient. The value of G2(dt) is used as the intensity for each
pixel in the super-resolution SOFI image, and the curve fit
(dashed line) obtains the diffusion coefficient,Dcalc, which is
accurate with respect to the true simulated value, Dsim. (f�l)
Results and comparison of fcsSOFI analysis. (f) Ground truth
pore map used in the simulation. Emitters undergo 1D
Brownian diffusion within the pores, with a different Dsim

for each pore. (g) Diffraction-limited average image. (h)
Centroid locations and trajectories localized by SPT analysis;
different colors indicate individual trajectories. (i) SOFI image
produced from G2(dt) and deconvolution. (j) Comparison of
extracted resolutions for each method, obtained from line
sections averaged across all y (color corresponds to border
colors in (g�i). (k) Diffraction-limited map of Dcalc. (l) Final
fcsSOFI image produced by image fusion, where (i) repre-
sents the saturation and (k) the hue. Scale bars = 300 nm.
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biocompatibility.32 Sample diffraction-limited images are
shown in Figure 1a. Resulting intensity transients from
one pixel in each pore are shown in Figure 1b,c, and their
respective autocorrelations are shown in Figure 1d,e.
The two true pore locations (Figure 1f) are not observed
in the diffraction-limited average image (Figure 1g) and
are difficult to resolve by traditional SPT,33 in which sub-
diffraction-limited localization of individual PSFs is per-
formed (Figure 1h; see Figure S6 for alternative blurred
centroid representation of SPT data). As often occurs
in localizationmicroscopy, SPTmischaracterized some of
the emitters to be between the twopores (Figure S3) and
incorrect tracking of emitters diffusing between the two
pores occurred. In contrast, the SOFI analysis in Figure 1i
revealed the presence of two pores. Figure 1j quantita-
tively compares the spatial resolutions obtained in
each type of image. SOFI analysis resolved the pores to
158 nm, which is one half of the full width at half
maximum (fwhm), compared to both the diffraction-
limited average image and SPT analysis, where there is
nodistinctionbetween thepores at the fwhm (Figure 1j).
Further, the diffraction-limited average image and SPT
analysis misalign the center locations of the pores
compared to the true location due to the overlap of
the PSFs (Figure S3). Advanced SPT algorithms could
better localize the centroids by rejecting overlapping
PSFs due to nonideal Gaussian shapes,34 but more
subjective user input would be required35 than the
algorithm used here.33 Comparison of data from a single
pore quantified the resolution enhancement of the SOFI
analysis to be up to a factor of 2 as compared to the
diffraction-limited image (Figures S2 and S4). Similar
improvements were found for simulated diffusion under
flow and anomalous Lévy diffusion (Figure S5).

SOFI analysis produced super-resolution images
under high-throughput conditions and low SBR,
unlike localization-based techniques. The quantitative
comparison of diffraction-limited imaging, SPT, and
SOFI analysis shown in Figure 1j was extended to SBRs
ranging from 1 to 10 (Figure S7 and movies S1 and S2).
The resolution improvement for SOFI was maintained
over the broad range of SBR conditions, whereas SPT
failed at lower SBRs. Additionally, correlation-based
super-resolution can be considered an a priori analysis
method, whereas the filtering, multiframe association,
andmachine learningmethods needed to broaden the
utility of SPT34 require subjective user input.35 There-
fore, for challenging single-molecule experiments,
where adequate signal is difficult to obtain, such as
those with fast diffusion or biological environments,
correlation analysis has advantages over SPT.

Simulations also showed that the distribution of
heterogeneous diffusion coefficients within pores is
accurately obtained and mapped at subdiffraction
levels. Curve fitting with a model for Brownian dif-
fusion was applied to the autocorrelation decay at
each individual pixel (Figure 1d,e). Calculated diffusion

coefficients (Dcalc) of Dleft = 1.0((0.1) � 105 nm2/s and
Dright = 1.1((0.1)� 104 nm2/swere accurately extracted
(e10% error) and mapped in Figure 1k. Due to the high
sensitivity of correlation analysis to weak fluctuations,
the analysis accurately quantifies diffusion of the PSF
across >2σ, producing a diffraction-limitedmap of diffu-
sion characteristics. In contrast, quantitative analysis
of the SPT data33 miscalculates a stationary population
of emitterswith log(D1/nm

2
3 s
�1) =�8.9((1.7) in addition

to a diffusing population, log(D2/nm
2
3 s
�1) = 4.7((1.5),

due to the close proximity of the pores and density of
emitters (Figure S8). Performing image fusion between
panels i and k of Figure 1 resulted in the final fcsSOFI
image (Figure 1l) that accurately quantifies the diffusion
constant within 10% at a spatial resolution of one-half the
diffraction limit. Further demonstration of the accuracy of
fcsSOFI using 2D simulations is provided in Supporting
Information (Figures S9 and S10 and movie S3).

Experimental Application of fcsSOFI to Agarose and Liquid
Crystals. fcsSOFI analysis was applied to image hetero-
geneous pore distributions and diffusionwithin agarose
hydrogels, which are used broadly in cell culture growth,
electrophoretic and chromatographic separations,9,36

and 3D immunoassays37 (Figure 2). Imaging the nano-
scale pore structure of agarose by traditional methods is
challenging due to the high water content, which
undoubtedly leads to the disparity in pore sizes reported
in the literature.36,38�40 We therefore compared fcsSOFI
analysis to diffraction-limited imaging and to SPT anal-
ysis of diffusing 100 nm carboxylate fluorescent spheres
in agarose. Wide-field total internal reflection fluores-
cence (TIRF) microscopy was used for imaging (see
Methods), and a blank coverslip with the spheres in
waterwasused as a control. Indeed, theheterogeneity in
spatial and diffusion features of the agarose could be
discerned by the fcsSOFI approach (Figure 2). In compar-
ison to the control sample in which diffusion occurred
with no preferred spatial distribution, in 1% and 2%
agarose, the probes stochastically diffused in the pores
(movies S4�S6). The 1% average image did not resolve
any structures due to fast diffusion and lowSBR,whereas
the 2% average image shows the diffraction-limited
position of emitters that are primarily trapped within
pores (Figure 2a�c). In contrast, fcsSOFI analysis re-
vealed the heterogeneous distribution of bright areas,
wherebeads are free todiffuse (i.e., pores) anddark areas
devoid of diffusing beads (high density agarose), and
successfully mapped the pore structure for both fast-
movingandslow-moving/stationaryprobes (Figure2d�f).

Quantitative characterization of the spatial and
diffusion properties in the 1% agarose environment
showed that the fcsSOFI approach does a better job,
as compared to diffraction-limited imaging and SPT,
in discerning pore sizes and heterogeneous diffusion
properties (Figure 2b,e,h). First, the fcsSOFI image in
Figure 2e resolved pores at a 150-fold higher contrast
compared to the diffraction-limited image in Figure 2b
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(SBR∼ 300 and∼2 for the fcsSOFI and average images,
respectively). This result demonstrates the high sensi-
tivity of correlation analysis to low signal fluctuations.
Next, the fcsSOFI analysis in Figure 2e was used to
determine that there are primarily two pore popula-
tions with diameters of 240 ( 90 and 1000 ( 500 nm
(Figure S11a). SPT analysis identified only short trajec-
tories due to the low signal and high density of
emitters (mean trajectory length = 4 points; Figure 2h
and Figure S11c) and yielded a smaller average pore
size of 150 ( 130 nm (Figure S11a). Interestingly,
if ensemble methods were used, instead of identifying
the underlying heterogeneous pore distribution, a
normal distribution with diameter of 240 ( 90 nm
would be extracted,39 agreeing well with one previous
report.40 Finally, for the diffusion properties, correla-
tion analysis finds an average of log(D/nm2

3 s
�1) =

4.8 ( 0.8, in agreement with expectations based
on FCS (Figure S11b).41 SPT also accurately finds
log(D/nm2

3 s
�1) = 5.3( 0.3. However, fcsSOFI analysis

super-resolves the spatial heterogeneity of diffu-
sion coefficients (arrows, Figure 2e). Smaller diffusion

coefficients seem to arise from increased confinement
within the agarose, where diffusion becomes anom-
alous (Figure S10). Another possibility, albeit unlikely
in this case, is that there are motions in the axial
direction that are not incorporated in the correlation
curve fitting decay model. In contrast, it is difficult to
visualize the relationship between the heterogeneous
diffusion coefficients and the porous structure with
a map of overlapping, short trajectories in the SPT
figures. Further quantitative discussion of the experi-
ments with 2% agarose is included in the Supporting
Information, where fcsSOFI analysis may not be the
preferred method for analysis of stationary emitters
that are trivial to track.

fcsSOFI analysis was also demonstrated to achieve
super-resolved structural details from 1D diffusion
of perylene diimide (DTPDI) single-molecule fluoro-
phores within lyotropic liquid crystal gels (Figure 3).
Liquid crystals can controllably self-assemble into com-
plex phase-segregated structures for applications in
biological and electronic transport and electro-optical
displays.42�45 While SPT has been applied to diffusion

Figure 2. Comparison of fcsSOFI and SPT analyses of pore size and diffusion in an agarose gel structure. Results for 100 nm
bead diffusion in (a,d,g) water over a blank coverslip, (b,e,h) 1% agarose, and (d,f,i) 2% agarose. (a�c) Diffraction-limited
average images show no features in (a) (blank coverslip) but also incorrectly no features (contrast <2) in (b) (1% agarose) due
to the low excitation power used and fast diffusion. (c) Diffraction-limited locations of beads in 2% agarose are observed.
(d�f) fcsSOFI maps show (d) unresolvable fast diffusion over the coverslip, (e) heterogeneous diffusion (highlighted by
arrows; purple, log(D/nm2

3 s
�1) ∼ 4; red, log(D/nm2

3 s
�1) ∼ 6) of average log(D/nm2

3 s
�1) = 4.8 ( 0.8 in 1% agarose, and

stationary log(D/nm2
3 s
�1) = 3.3(0.3 in 2%agarose. Comparatively, (g�i) interpretationof SPT in 1 and2%agarose is difficult

due to short and overlapping trajectories. Quantitative comparisons of diffusion coefficients and pore size in (e,f) and (h,i) are
in Figure S11. Scale bars are all 1 μm. Example curve fitting results of fcsSOFI analysis are shown in Figure S13. Movies of the
respective data analyzed are shown in movies S4�S6.
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in 1D-aligned liquid crystals11,42 and polydimethyl-
siloxane nanochannels,46 optimizing appropriate experi-
mental conditions is a challenge. In contrast to fluores-
cent beads, single-molecule emitters present an
additional challenge due to photobleaching, which
reduces the total signal observed during the measure-
ment. Rapid diffusion also causes difficulty in linking
frame-to-frame positions to form trajectories. SPT fails
in cases like the data exhibited in movies S7 and S8
due to photobleaching and fast diffusion. Despite the
limited amount of signal, fcsSOFI analysis reveals the
1D spatial alignment of pores in F127 and C12EO10
liquid crystals (Figure 3c,d). Due to fast diffusion and low
SBR, the diffraction-limited average images entirelymiss
this 1D spatial alignment (Figure 3a,b). For F127, analysis
of the diffusion coefficients was very similar to previous
reports (log(D/nm2

3 s
�1) = 4.7 ( 0.3),42 whereas SPT

failed to localize molecules due to the low SBR
(Figure 3e). For C12EO10, the low SBR posed challenges
in curve fitting (Figure S12d). However, estimation of

diffusion coefficients by SPT in C12EO10 was not
possible due to short trajectories (Figure 3f). Further
work with higher SBR and extended dye lifetimes could
improve confidence in the results of fluorophore diffu-
sion in lyotropic liquid crystals.

CONCLUSION

We introduced fcsSOFI, a new correlation-based
super-resolution imaging technique to characterize
the structure of and diffusion dynamics within porous
nanomaterials. We showed by simulations and by
experiments that fluorescence fluctuations fromdiffus-
ing probes within porous spaces can be analyzed
to yield information about pore sizes and diffusion
coefficients. Our method does not require extensive
development of experimental protocol to directly label
the material compared to other super-resolution tech-
niques; radiant probes only must be able explore the
porous space. Overall, we envision that fcsSOFI could
be applied to a diverse class of porous materials,
including synthetic soft polymers, such as hydrogels,1

phase-separated block copolymers,11 and polymers,6,10

biological environments such as the cellular cytosol3

and membrane,4,5 and heterogeneous hard porous
materials suchas surfactant-filledmesoporous silica,11,47

zeolites,2 metal�organic frameworks,7 and activated
carbon.8 In the latter inorganic systems with dense pore
networks, the rate of diffusion and spatial alignment
of pores would be expected to be able to be resolved
by fcsSOFI, but a possible limitation would be resolving
every single poredue to the current resolution enhance-
ment of a factor of j2. It would also be interesting to
combine fcsSOFI with scanning methods such as raster
image correlation spectroscopy24,48 and spatiotemporal
image correlation spectroscopy,49 which could produce
super-resolution images with a confocal microscope
geometry and on different time scales relevant
to cellular processes. Future work will pursue a
better understanding of the relation between the
experimental parameters, analysis, and final result-
ing correlation images,50 including quantifying the
statistical requirements for correlation analysis,51

the relationship between probe/pore sizes, concen-
trations and chemistries, quantifying more diverse
types of diffusion, and obtaining spatial informa-
tion in 3D.29,30

METHODS

Diffusion Simulation. All simulations and analysis were written
in MATLAB 2011b. For the simulation, we define our pixel size to
be 50nmand frame rate tobe 25Hz to be similar to experimental
conditions. Each emitter is represented by a two-dimensional
Gaussianpoint spread functionwith a fullwidth at half-maximum
of 317 nm, approximately the diffraction limit for a 637 nm
excitation wavelength. The intensity of the emitter is taken from
a Poisson distribution of intensities to simulate shot noise.
The background of the image is taken from a random normal

distribution to simulate readout noise. For simulations of 1D
diffusion, the emitters areallowed to traverse inpores separated at
a subdiffraction limit (Figure 2a,f) by 300 nm. Continuous bound-
aries were used at the edges. For 2D diffusion, pore maps with
features separatedby variablenumbers of pixelswereprovided, as
shown in Figures S9a and S10a. Random 1D and 2D walks were
used to simulate diffusion. For each step, the magnitude of
the displacement is based on a user-defined diffusion coefficient
and distribution width, and the step size was sampled from a
normaldistribution andadded to theparticles' previous location.52

Figure 3. Structureanddiffusion characterizationof aqueous
lyotropic liquid crystal gels by fcsSOFI compared to diffrac-
tion-limited imaging and SPT. Results for (a,c,e) DTPDI diffu-
sion in F127 and (b,d,f) DTPDI diffusion in C12EO10. (a,b)
Average diffraction-limited images show no noticeable fea-
tures,while (c,d) correlation reveals paths of 1Dpores aligned
across the structure. (e,f) Particle tracking cannot obtain
(e) any particle locations in F127, while in (f) C12EO10,
molecules are localized, diffusion across paths is incorrectly
identified, and diffusion coefficients cannot be extracted due
to the shortness of the trajectories (only two trajectories are
longer than four points). Scale bars are all 1 μm. Videos of the
respective data analyzed are shown in movies S7 and S8.
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Three types of diffusion were simulated to demonstrate the
versatility of the technique: Brownian (random walk), Brownian
under flow (biased random walk), and anomalous diffusion
(Lévy walk, step size taken from a power distribution). The
number of emitters, diffusion constant, and SBRwere also varied.
A total of 5000 frames were analyzed in each simulation. See
movies S1�S3 for example simulations.

Experimental Agarose Data. Carboxylate-modified polystyrene
beads of 100 nm size (orange fluorescent, max abs/em: 540/
560 nm, Invitrogen) were diluted by a factor of 1:500 concentra-
tion in 1% and 2% (w/w) agarose (type I low EEO, Sigma-Aldrich)
in molecular biology grade water (Hyclone, VWR) heated to 80 �C.
The anionic carboxyl group on the emitter beads would be
expected to have minimal interaction with the anionic agarose.41

Further discussion on the selection of possible emitters, including
mixtures, for fcsSOFI is provided in the Supporting Information.
Glass coverslips (no. 1, 22� 22mm,VWR)were cleaned for 90 s in a
bath of 4% (v/v) H2O2 (Fisher Scientific, Radnor, PA) and 13% (v/v)
NH4OH heated to 80 �C. The slides were further cleaned under
O2 plasma (PDC-32G; Harrick Plasma; medium power) for 2 min.
A custom-sized silicon template (43018M, Grace BioLabs) was
placed on the coverslip, and a 30 μL aliquot of the bead/agarose
solution was added. The chamber was covered with an additional
coverslip to avoid dehydration, and the agarose gelled at room
temperature.

An in-house constructed wide-field TIRF microscope was
used to measure samples after equilibration on the microscope
stage for 15min. The beamof a solid-state532 nm laser (Coherent,
Compass 315M-100SL) was focused at the edge of a 1.45 numeri-
cal aperture, 100� oil-immersion objective (Carl-Zeiss, alpha Plan-
Fluar) for through-the-objective TIRF microscopy. Further details
of the microscope setup have been previously reported.53 The
generated evanescent wave at the coverslip/agarose interface
had an approximate intensity of 10 μW/cm2. The low inten-
sity was used to limit the observation volume in the axial
dimensional (∼85 nm) to avoid 3D effects on the projected 2D
observation. Data were recorded with an electron-multiplied
charge-coupled device (Andor, iXon 897) for 1000 frame intervals
with an acquisition time of 10 ms and frame rate of 25 Hz.

Experimental 1D C12EO10 and F127 Samples. The triblock copoly-
mer Pluronic F127 having the formula PEO100PPO65PEO100 was
obtained from Anatrace, while decaethylene glycol monodo-
decyl ether (C12EO10) was obtained from Sigma-Aldrich. Both
were used as received. Aqueous gels of F127 and C12EO10were
prepared by first adding an appropriate amount of either to a
clean, disposable glass vial. An aliquot of HPLC-grade water was
then added, followed by an aliquot of n-butanol in the case of
F127. The final dye-doped F127 gel composition was 47.5%
F127, 38.6% water, 9.9% butanol, and 4.0% ethanol (see below)
by weight. The final dye-doped C12EO10 gel composition was
53.7% C12EO10, 44.1% water, and 2.2% ethanol (see below)
by weight. These gels were extremely viscous. They were mixed
by repeated inversion and centrifugation. Air bubbles formed in
the gels during mixing were removed by repeated centrifuga-
tion for several hours over a period of several days prior to use.

N,N0-Bis(tridecyl)perylene-3,4,9,10-tetracarboxylic diimide
(DTPDI) was employedas theprobedye inboth samples. Thedye
was obtained from Sigma-Aldrich and was used as received.
A 96 nM solution of the dye in ethanol (HPLC-grade) was used
to prepare dye-doped samples. The final dye concentration was
∼5 and ∼3 nM in the F127 and C12EO10 gels, respectively.

Fluidic channels were used for encapsulation and flow
alignment of the F127 and C12EO10 samples, as described
previously.42 These were prepared by casting uncured poly-
(dimethylsiloxane) (PDMS, Sylgaard 184) onto a prefabricated
glass mold. A rectangular fluidic channel of 0.5 mm depth,
2.5 mm width, and 15 mm length was obtained after curing
the PDMS and separation from the mold. Inlet and outlet
holes 1.5 mm in diameter were subsequently punched in the
ends of the channel. The PDMS monolith was next cleaned
in an air plasma (5 min) along with a microscope coverslip
(FisherFinest Premium). The PDMS monolith was then
contacted to the coverslip to form the completed fluidic cell.
All Movie data were collected by imaging through the
coverslip.

Gels were loaded into the fluidic channels by first drawing
them into a glass capillary. The capillary was next contacted to
the cell inlet, and the gel infused into the channel. The viscous
gels were flowed into the channels at a linear flow velocity of
∼0.5 mm/s. The small dimensions of the channel and the high
viscosities of the gels ensure that channel loading occurred
within the laminar flow regime. Optically clear gels were
obtained in all cases. After filling, the inlet and outlet holes
were sealed using standard, two-part 5 min epoxy. All samples
were characterized within a few hours of preparation. The
ambient temperature during sample characterization ranged
from 20 to 22 �C. Verification that the gels comprised flow-
aligned cylindrical micelles was obtained by comparing gel
composition to their published phase diagrams,54,55 by small-
angle X-ray scattering in the case of F127 and by observation of
1D dye diffusion along the flow alignment direction in the
microscope.

All DTPDI tracking experiments were performed on a
wide-field fluorescence microscope operated in pseudo-TIRF
mode. This system has been described previously in detail.56 It
employs an inverted epi-illumination microscope (Nikon TiE)
with closed-loop focus stabilization. Light from a blue diode
laser (488 nm) was used to excite dye fluorescence. The excita-
tion light was first passed through a spinning optical diffuser
before being reflected from a dichroic beamsplitter (Chroma,
505 DCLP) and focused, off-axis, into the back aperture of an
oil-immersion objective (Nikon Apo TIRF 100�, 1.49 numerical
aperture). The incident laser power was maintained at
<4mW (<103W/cm2) in all experiments. Fluorescence collected
from the sample was passed back through the dichroic beams-
plitter, through a band-pass filter (Chroma HQ535/50m), and
directed onto an electron-multiplying CCD (EM-CCD) camera
(Andor iXon DU-897) for 400�500 frame intervals.

fcsSOFI Analysis. To analyze the data, the experimental data
collected by the electron-multiplied charge-coupled devicewas
converted to a MATLAB-compatible format as a series of 2D
images. Second-order correlation was performed at each pixel
over time using the built-in MATLAB function “xcorr”.15 To avoid
noise artifacts in our analysis, the resulting autocorrelation data
were log binned.

To produce the super-resolution image with the “new”
PSF with a resolution improvement, we use the value of G2(r,τ)
at a time lag of one frame.15 Based on the imaging extensions of
FCS,24,25,57 the spatial distribution of diffusion coefficients can
be obtained from curve fits of the correlation curves. From the
calculated G2(r,τ), curve fitting over all time lags is performed
according to

G2(r, τ) ¼ A(r)
1

1þ τ=τD
þ c (7)

where A(r) represents the amplitude G2(r,0), c is a constant
offset, and τD is the characteristic diffusion time across the pixel
for which the autocorrelation was performed. This can be
related to the diffusion coefficient, D, of the emitter by

D ¼ ω2

4τD
(8)

assuming two-dimensional Brownian diffusion, where ω is the
size of the detection region, a combination of the pixel size, and
microscope point spread function.58 The resulting diffusion coeffi-
cient calculated at eachpixel is then spatiallymapped. Equations 7
and 8 can be modified for other types of diffusion including 1D
Brownian (as for the simulations in Figure 1 and experimental data
in Figure 3), flow, and multicomponent diffusion.24

A super-resolution map of diffusion information is formed
by fusing the spatial and diffusion results on a HSV colormap.
The hue (H) is the normalized log of the diffusion coefficient.
Diffusion coefficients where the R2 from curve fitting is <0.5
are set to zero due to low confidence in the values obtained.
The saturation (S) is the normalized super-resolution spatial
information. Finally, the value (V) is set to a constant value
of 1. The HSV matrix is then converted to RGB to provide a final
fused image containing a super-resolution map of diffusion
characteristics. Because thefinal image containsmore information
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than the starting two images alone, theHSVmethod represents an
image fusion technique.31

Analysis by Particle Tracking, Diameter of Gyration, and Delaunay
Triangulation. Analysis of the collected data to obtain pore
size and diffusion coefficients from single-particle tracking
was performed by previously reported methods.33,59,60 Briefly,
particle tracking included steps to increase the signal-to-noise
ratio, definition of a local threshold to identify possible particles,
localization of particles by radial symmetry,61 and a nearest
neighbor approach to connect trajectories.33 Analysis of the
diffusion coefficient is obtained by a maximum likelihood esti-
mation method.62 From the respective trajectories, the radius
of gyration over the entire trajectory was calculated to measure
the average radius, of which the probe traversed.52,60 The radius
was then doubled to report the diameter. For the fcsSOFI
images, Delaunay triangulation todiscriminate irregularly shaped
features was applied, with an intensity threshold for binarization
two standard deviations above the mean intensity of the image,
a minimum group size of five pixels, and maximum distance
between neighboring points of three pixels.59 The total area
of the identified pores was calculated by summing the grouped
pixels together. The diameter was calculated by assuming a
spherical pore, where d = 2

√
(area/π).
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